4.-FURTHER PERMIAN CORALS FROM WESTERN AUSTRALIA.

By Dorothy Hill, Mi.Sc., Ph.D.
Communicated by Curt I'eichert, Ph.D.

Read 13th August, 1940 ; Published 6th Fobrubry, 1942.
The corals described in this paper are from the Cydthaxonia faunas in the Permian of Western Australia. These famas are:-

NORTH-WEST. ${ }^{1}$

Kenneby series.					
WANDAGEE SERTES :-					
Linoproductus stage: Page					
? Euryphyllum. reidi Hill		\ldots		\ldots	61
Farowites. sp.	\ldots	\ldots			64
Thamnopura immmensa llill	\ldots	...	\ldots		6.5
Thammoprora aff. marmionensis (Etheridge)		\ldots			66
Lamellibranch stage.					
C'alceolispongiu stag.s :-					
fllotriongyllam. sp.	...	\ldots	\ldots		60
Euryphyllam reidi llill		...			61
\% Eiuryphyltam. sp.	\ldots		(i)
Verbeekiella mersa, sp. nor. ...					(6)3
Thamnoport all. murmionensis (Etheridgre)		\ldots	\ldots		$6{ }_{6}$
(CNDLEGO SERJEN:					
Plerophiyllum. sp.	\ldots	\ldots	\ldots		$6{ }^{2}$
Verbeekiella mersa, xp. nop. ...		\ldots	\ldots		(i:)
BELCADOO SERHES.					
WOORAMEL SERIES.					
('ALLX'THARRA SERIES:-					
" Amplexus" pustulosus Hudleston	\ldots	\ldots	\ldots		5,
T'achyldusma. sp.					
1-ertherkiella tull ari (Hosking) ...			\ldots		64
Thamnopora insculpta, sp. now			\ldots		67
? Thatmmopora, sp.		\ldots	\ldots		(is
Cladochonus striatus, sp. nov.					71

LYONS SERIES (GLACIALS).
KんTISERLEY: ${ }^{2}$
ERSKINE SERIES.
LITERLNGA SERRIES:-
T'uchylasman densum Hill.
NOONCANBAII SERIEN:-
Thamnoport marmimensis (Etheridgec).
(lautachonnes nicholsomi (Etheridme.)
Themmopora immernas Hill from ('hristmas C'k. homestead may halve come from this series.
NLRA NLRA EERIES.
POOLE RANGE OR GLACIAL SERIEN.

[^0]
IRWIN RIVER. ${ }^{3}$

Page
UNFOSSILIFEROUS WHITE SHALES ANI) SANDS'TONES.
UPPER MARINE SERIES.
COAl, MEASURES.
FOSSIL CLIFF BEDS:-
"Amplexts," sp. 5%
Euryphyllum trizomatum Hill.
Gerthia sulcata (Hinde).
Herophyllum anstrale Hinde.
SHALES WITH LIMESTONES WTTH Metalegocerch.
GLACIAL BEDS.
Species to which no page reference las been given in the above lists have already been described (Hill, 1937a).

The Cyathuxoricu Fauna of the Palaeozoic consists of small, solitary Rugosa without dissepiments, and of Cladochonids, Favositids, and Palaeacids. It appear's very important in the Artinskian of the Urals and 'T'imor, and the Middle Permian of 'Timor, and it is the only coral fama known from the Kamilaroi Series (mostly l'ermian, but possibly in part Uralian) of Australia. Its ocenrrence in the Lower Carboniferous has alrearly been summarised (Hudson, 1935 ; Hill, $1938 \mathrm{a}, \mathrm{p} .5$). Species belonging to it have recently (Dobrolyubova, 1936) been described from the Moscovian and Uralian of Russia, so that its continuous existenco from the Lower Tournaisian to the Middle Permian is proverl. Evidence that it was already in existence in the Devonian and oven in the Silucian is accommating. It is characteristio of a particular facies of deposition, described by Fill (1938a, p. 5). The long range of the $\mathrm{T}^{\text {rablublate genera in this fauna has long been known, and it may }}$ be that morphologically similas Rngose forms ferm different periods, at present regarded as different generically, we really one and the same genus. Ithese morphologically similar forms have alrearly been indieated (Fill, 1938a, 1'. 8). This possibility weakens the roliance which may be placed on the genera as indicator's of horizon. The species from both the Wandagee Stage and the Callythara Stage, however, are comparable with Artinskian or Midelle PermianBasleo species, rather than with Uralian or Lipper Permian specjes, and Euryphyllum. is so far known, outside Australia, only in Artinskian berls. In the absence of species common to the Western Anstalian faunas and the 'Vimor or Russian fanmas, we cannot at present indicate the precise age of our famas. Two species from the Wandagee Stadre, Euryphyllum reili (Hill) and Thrmnopara immerts (Hill), are associated at Castle C'reck, Theodore, Queensland, at an unknown horizon in the Bowen sequence. Cladochonus nueholsoni (Etheridge) from, the Nooncaubah series, occurs in the Condamine Fault. Block and in the Coral Stage of the Bowen Marine Series in the Springsure District, Queensland.

ZOANTHARLA MADREPORARIA RUGOSA AMPLEXIMORPHS.

Amploximorphs: Hill, 1940, p. 390.
These simple, cylimbical, wresciculate Rugose corals with short, equal lamellar septa, and complete tabulae, and without dissepiments, are common in the Silurian, Devonian, Carboniferous, and Permian, and probably represent the enclpoints of trends of simplification in many stocks. Tn the Permian of

[^1]Timor a group occurs which differs from the earlier ampleximorphs in having dilated septa usually swollen a little axially, and continuous vertically throughout that outer part of the tabularium where the edges of the tabulae are downturned. Small septal ridges may continue for a short distance over the upper flat surfaces of the tabulae. Usually minor septa are absent. Such are some small specimens in the Sedgwick Museum, Cambridge, and a large form figured as Amplexus coralloilles by Gerth (1921, p.l exlvi, figs. 22. 23) from the Upper Artinskian of Bitauni, 'Timor. Other Permian ampleximorphs, which appear to have been derived from zaphrentoids by the withdrawal of the septa from the axis have been called Paracaninia Chi (1937, p. 93); but these have thin, unequal septa, not swollen at their axial edges. Others again, which appear to have an aulos, have been called Amplexocarinia Soshkina (1928, p. 379). Yet others, with unequal, rhopaloid septa, have been called Amplexus by Gerth (1921) and Heritsch (1937).

" Amplexus ', pustulosus Hudleston. (Plate I., fig. I.)

Amplexus? pustulosus Hudleston ; for references, see Hill, 1937a. p. 45, pl. i, fig. 1; textfig. 1; "Fossil range," Gascoyne River, Permian.

Diagnosis: Erect, turbinate Rugose corals with the major septa dilated and laterally contignous, leaving a wide axial area free of septa.

Remark:s: One specimen from the upper part of the Callytharra series near Trig. Station K52, Kennedy Range, near Williambury-Middalya mad, W.A., is probably a member of this species, although it is curvel rather than erect, and cylindrical rather than turhinate. It is flattened in the plane of the cardinal septum, probably by crushing, as the tabulae seen in a vertical section are somewhat shattcred. There are 33 septa at a rliameter of 1 anm. x 18 mm , extending a little over half way to the axis, sub-equal, some with sharp axial erlges, and some with swollen axial edges, all dilaterl so as to we almost in contact laterally. The cardinal septum is shorter than the rest and is on the longest side of the corallum. No minor septa are developed. The tabulae are complete, shallow domes. Etheridge has already mentioned this species from Williambury Station, Minilya River.

"Amplexus " ip. (Plate II., fig. 1.)

Material: One specimen from the Permian of Fussil (liff, Irwin River, in the collertion of the University of Western Australia.

Description: The specimen is an ohliquely broken fragmont 60 mum long, and 32 mm in diameter. 'There are about 50 slightly dilated major septa, continuous vertically for about 5 mm . from the opitheca, and then extending for a short distance over the upper flat curfaces only of the tabulae as faintly marked ridges. The septa appear to be slightly riopaloirl, i.e., swollen at the inner edge of their vertically continuous portions ; as far as can be seen from the fragment, they are equal, and there are no minor septa. There is a peripheral stereozone about as thick as the septa. The tabulae are complete, unequally distant, up to 3 mm . apurt, and with an edge 5 mm . wide, downturned to the steroozone at about 45°. It is in this area of downturning that the septa are vertically continuous.

Remark:s: As far as one can ascertain from the fragment, the septa are equal, so that the specimen does not belong to Paracaniniu; neither is there an internal wall, so that it is not Amplexocarinia, and pending further investigations in Carboniferous and Permian ampleximorphs, it is referred to
"Amplexus." It seems close to Amplexus coralloides of Gerth non Sowerby, from the Upper Artinskian of Bitauni, Timor, but it differs from the Lower Carboniferous Amplexus coralloides J. Sowerby in having the septa dilated and not attenuate, and in having the vertically continuous segment of the septum much wider.

ZAPHRENTIMORPHS.

Zaphrentimorphs have been discussed recently (Grabau, 1928; Hill, 1938).

Genus AlLOTROPIOPHYLLUM Graban.

Allotropiophyllum Graban, 1928, p. 130.
Genotype (by designation): Amplexus spinosus de Kioninck var. sinensis Grabau, 1922, 1. 64, pl. i, figs. 22a, 22b, 23. Chihsia Limestone Chihsiashan, Central China (- Artinskian).

Dingnosis: Simple Rugo*e corals, typically curverl, and bearing scattered spines. The septa of the counter cquadrants and sometimes the alar and first meta-septa are gromper in a narrow crescentic area embracing the counter side of the corallum: the remaining septa of the cardinal quadrants are directed towards a point or points on its inner side, which is roughly midway between the axis of the corallum and the epitheca. The septa become amplexoid in late stages. T'abulae are usually far apart, complete and oblicue, with a downturned border of the same width as the rescent : they slope downwards from the convex to the concave site of the corallum. There are no dissepimento, and minor septa are developed very late or not at all.

Remurhs: The genus is known in the Tournaisian of Belgium, the Dinantian and Lower Namurian of Nootland, the Artinskian Chilsia limestone of China, and the Upper Permian of Djoulfa in Armenia. Possible synonyms of the genus are discussed in the authors " Carboniferous Rugosa of Scotland, Part 111.". in course of publication by the Palaeontographisal Society of London.

ALLOTROPIOPHYLLUM, sp. (Plate I., fig. e..)

Haterial: One specimen in the collertion of the University of Western Australia, from the luwest horizon with large speries of C'rlceolispongia, middle Calceolispongia stage, east limb of syncline west of Coolkilya Pool, Minilya River.

Description: The specimen is broadly trochoid, with a talon, and a very deep calice. The epithera is longitudinally ribhed but somewhat weathered, the deep groovos corresponding to the major septa haring thallow grooves between then indicating the potential presence of minor sepsa. Spines were not observed. Six major septa in each counter-flumtrant are joined with the comater septum in a crescentie curve on the comenter side of the coralhm. Six straight metasopta in each cardinal quarlrant join at their axial elges at a point on the edge of the crescent, leaving a wide closed forsula expanded a xially. The long cardinal septum wanders over the fosiola to join it at one side of the crescent. The sopta are all slightly and equally dilated, and there is a narrow peripheral stereozons. No minor septa are visible. The arrangement of the tabulae is not known.

Remarks: The one specimen is insufficient for a full specific description or comparison with other speries. The age indicated is that of the genus, C'arboniferous and Permian.

Gems EURYPHYLLUM Hill.

E'uryphllum Hill, 1937, p. 1.50; 1937, a, p. 50 ; 1938. p. 25.
Genotype: Euryphyllum reidi Hill, 1937, p. 150; 1937, i, p. 50 ; 1938, p. 25 ; Permian (?Artinskian) Bowen Marint series of Qucensland.

Diagnosis: Simple, turbinate to ceratoid Rugose corals, erect except at the tip, which is tmmed aside: with well-marked interseptal ridges, and typically an obligue calical floor. The major septa, which are never carinate or serrate, extend to the axis and are pimmately gromped abont a long, closed fossula, bisected by a long cardinal septum on the concave side of the corallum ; alar fossulae are present. The septa are dilated, and at first are laterally contiguons throughont, but during ontogeny dilatation decreases in a widening zone midway between the periphery and the axis, leaving a wide peripheral stereozone, and an axial structure formed by the conjoined dilated axial ends of the septa. Very short minor septa appear late, and remain buried in the stereozone. Tabulae are distant, usually dilated, complete or incomplete, and there are un dissepiments.

Euryphyllum reidi Hill. (Plate 1., fig. 3; Plate II., fig 2.)
Euryphyllum reidi Hill, 1937, p. 1.50: 1937a, p. 50; 1938, p. ..., pl. i. Permian (? Artinskian) of Queensland.

Holotype: F3243, University of Queensland collection, from the ?Artinskian Upper Dilly Stage of Cabbage Creek. Spriugsure District.

Diagnosis: Euryphyllum with oblique catice, the cardinal quadrants being wider than the counter ; the peripheral stereozone is irregnlar and very wide, and septal dilatation does not decrease until very late.

Remarks on North-Western Austrulian Specimens. There are in the Collection of the University of Western Australia, 5 specimens from the Stropha-losia-Calceolispongia horizon, just below the horizou with Allotriophyllum, sp., middle Calceolispongia stage. I specimen fiom the horizon just below the Dictyoclostus gratiosus zono, upper Calceolispongin stage, 6 specimens from just above the "worm track" horizon, mpper ("alceolispongia stage, all from the east limb of the syncline west of Coolkilya Pool, Minilya River, and 1 specimen from the main Culceolispongia horizon, 6 specimens from the Cleio-thyrulina-Calceolispongia horizon, all from the יpper Calceolispongia stage, west limb of the same syncline. The specimens on the whole are rather larger than those from the Springsure area, but those from the first named horizon are identical in size with Queenstand spocimens liom Castle Cresk, Theodore. The species may provo divisible. I have not yot made a detaited study of zaphrentimorphs from the Upper Marine of Now South Walrs, but from Etheridge's ligures none appears to be E. reidi, though Z. greqoriuna is possibly a member of the genus.

Thirteen specimens from the highest Calcoolispongia horizon, at the top of the Wandagee series, are identified as Euryplyyllum, reidi Hill. They are of the morphology of that sub-group from Castle Creek, Qucensland, and from the loeality J 3 , in the middle or uppor parts of the Calceolispongia zone in the Wandagee Series, west or south-west of Coolkliya Pool, Minilya River. The localities of these 13 thirteon specemens are:-
south-west side of Wandagee Hill, near month of South-West Creek; near south-east corner of Wandagee Hıll, at crossing of Wandagee Wnol-shed-Middalya road over highest Calceolispongia horizou;
north-east corner of Wandageo Hill.

Two spocimens from the uppermost Pseudogastrioeeras horizon of Lino-productus-Fenestella stago of Wandagee series, are identified as Euryphyllum reidi Hill, but they may represent a variant from the morphology characteristie of the Culccolispongia zone, for their septa are without any eurvature. Nevertheless, a similar morphology is known in specimens from Castle Creek, Queensland.

? EURYPHYLLUM, sp. (Plate 1., fig. 4.)

Material: One specimen from locality $\mathrm{H}_{4} \mathrm{E}$, in the Collection of the University of Western Australia from the lowest horizon with a species of large Calceolispongia, middle Calceolispongia stage, east limb of syncline west of Coolkilya Pool, Minilya River.

Description: The specimen is small and trochoid, the diameter at the upper edge of the calice being 18 mm , with a deep calice and strong longitudinal ribbing. One side of the corallum, about an alar fossula, is excavate, but whether from injury or attachment it is impossible to say. Major septa only are developed, and they are eonsiderably dilated; there are 7 in each cardinal quadrant and 7 in each comnter quadrant ; the axial edges of those in the cardinal puidrants all meet the axial edge of the short counter septum, or join the two parallel septa about the cardinal forsula. There is a lozengeshaped gap filled with matrix in the middle of the coral, where the septa of the eardinal aml counter quadrants are parted, the greatest width being in the plane of the alar fossula, and the opposite diameter being between the axial edges of the cardinal septum and the counter septum.

Remarks: Whether this gap is a specific character or a pathological condition camnot be determined without further specimens. In the meantime the specimen is placed doubtfull. in Euryphyllum. It might, however, be an aberrant Allotropiophyllum.

Genus PLEROPHYLLUM Hind
Plerophyllum Hinde, 1890. p. 195; for references, etc., see Hill, 1937, a, p. 47.
Genolertotype (chosen (irabau): Plerophyllum australe Hinde, 1890, p. 196, pl. viiiA, figs la-f ; Permian. (Gascoyne River ; Irwin River ; Western Australia.

Diagnosis: Stnall, curved, ceratoid Rugose corals in which the two counter-lateral septa, both alar septa and the cardinal septum (and sometimes the counter septum also) are larger and more dilated than the others, but equally developed among themselves, and are swollen near their axial edges. Soptal insertion is accelerated in the counter quadrants.

Plerophyllum sp. (Plate II., fig. 3).
Material: One specimen from the Cundlego Series, in the fossiliferous horizon above Coolkilya Pool, Minilya River.

Description: The specimen is cylindtical and very small, being the calical end (8 mm .) of a sperimen, with a constant diameter of 3 mm . Longitudinal and growth striations are well-marked. The two counter-lateral septa, the alar septar and the cardinal septum are difated and meet at the axis, and are alnost equally spaced. Shorter septa can be distinguished between them, the commter septum clearly, but others less clearly. There is a stereozone about 0.75 mm . wide at the peripherr:

Remarks : This small specimen may be only a young individual of Plerophyllum australe, and so pending the discovery of more material it is left unnamed. No adult P. austrule are known from the Wandagee Se-ies.

Genus VERBEEKIELLA Gerth.

Verbeekiella Gerth, 1921, p. 81 ; nom. nov. for Verbeekia Penecke, in Verbeek, 1908, p. 673 ; Verbeekia was pre-occupied by Fritsch, 1877, for a Tertiary echinoid.
Verbeekia; Hill, 1937. a. p. 54.
Genotype: Verbeekia permica Penecke loc. cit. = Clisiophyllum australe Beyrieh.

Diagnosis: Simple Rugose corals typically with much dilated vertieal skeletal elements ; with a clisiophyHoid axial column, with domed tabulae, and without dissepiments.

Remarks: The genus is reported from the Moscovian and Artinskian of Russia and the Permian of Timor, and V. talboti, (Hosking) oceurs in the Callytharra Stage of tho North-West of Western Australia. Zeliaphyllum Heritsch (1936, p. 130, genotype Z. suessi Heritsch, ihl., toxt-fig. 34, pl. xviii., fig. 24) from the Lower Schwagerina limestono of the Camie Alps may bo synonymous. Cravenia Hudson (1928, p. 252, cenotype rhytoides Hudson, itl., pl. i., figs. la-g), a Tommaisian form of England, may bo related or synonymous. It is difficult to know whether genera of solitary coralla with axial eolumns but without dissepiments should be considered as members of tho family ClisiophyHidae or not ; and for the present they are left as Rugosa incertae sedis.

Verbeekiella mersa sp. nov. (Plate 1., figs. i. (6: plate II., fig. 4). Holotype: From Linoproduchus-Calcrolispongia horizon, just below lowest Propinacoceras zone, lower Calceolispongiu stage, cast limb of syncline west of Coolkilya Pool, Minilya River. Fonr other specimens from just above the "worm track" horizon, upper Calceolispongius stage, same locality. Another is from the fossiliferons Cundlego horizon above Coolkilya Pool.

Diagnosis: Verbeckiella with septa greatly dilated at first, without minor septa, with the axial strueture quite dense, of dilated lamellaze attached to the counterseptum.

Description: Trochoid coralla, about 40 mm . tall with a sliglitly irrogular curvature and a calical diameter of 20 mm . The diameter is longer along the cardinal-counter lino than at right anglos to it. 'The epitheca is without longitudinal striation, but shows growth ammation. The cardinal septum is on the longor sido, but is not necessarily in auy plane of symmetry of the corallum. When the epitheca is weathered away, slender grooves aro seen up the middlle of oach septum. The distal alges of the septa are curved, rising up slightly from the epithoca, and then descending a little in a long curve towards the axial exge ; when the corallum is brokon vertically down a septum, lines of growth are seen parallel to this curve of tho distal edge. The axial structuro projects as an olongate boss, which may show latoral ridges. Only major septa are developed, 20 at a diametor of 12 mm ., up to 26 at greater diameters. There is always at least ono more soptum in cach counter quadrant than in each cardinal quartrant, so that the alar fossulae tend to bee on tho cardinal side of the corallum. Tho septa are dilated so as to be in contact throughout the young stages, but as the corallum grows the dilatation lessens somewhat ; a narrow peripheral storeozone is always left, and the thinnest part of a septum is just inside this storo zono, so that the sopta tend to be rhopaloid. The counter septum is joined with the axial structure, which is made up of a median lamella and a few lateral lamellae so dilated as to be in contact; very occasionally spaces may be seen between the lamellae; the sides of the structure may be smooth, so that it is oval in section, or ridged
by the outer edges of the latoral lamellae; it is always joined to the counter septim, but is not at rontintation of the comber septim. The tabulao are thin, complete and incomplete, and domed. No dissepiments aro dovoloped.

Remarks: The oval section of the axial structure and its confluence with the counter septum suggests that this species should be placed in Lophophyllum or Lophophyltidium, or other gencrab with a colmolla formed simply by dilatation of the axial end of the comenter septmon. But seetions show that this axial structure is really compound, an axial colnm formed by dilatation of its constitmont medial and lateral lamelate, so that the affinties of the species are with l'erbeckiclle or Simophylham (Salban. In Simophylham the formation of the compound axial structure by tho association of the dilated axial ends of the other major septa with the prolonged, swollen axial end ol the comber septum is evident, lant in lopherkielle the compornd axial structure is dissociated from the axial ands of the septa fexcopt the counter and cardinal septa in some speceiss) thronglout the corallom. K. merser has this dissociated type of structure. It is the on! y speceies of the gents which is homeomorphic with Lophophyllam. It ditions from V. lalboti from the Callytharab Sories (somewhat Jower than the Wandagee Series) of the North-West, chiefly in the genoral absence of spaces in its axial structure and in the absence of irregularity in dilatation.

Verbeekiella talboti (Hosking) (Plate 1., fig. 7).

Clisiophyllum lultoli Hosking; for references, ete., see Hill, I937, a, p. in, pl. i., figs. 13-17: lext-ligs. 6. 7 ; P'ermian. Callythara fories, ereek half a mile west of Callythatra iprongs, Wooramel R.

Diatmosis: Verbeckiella with dibunophylloid axial structure containing fow septal lamellae.

Remarks on a specimon from Callythara springs: A large specimen with a height of 50 mm ., and a calical diancter of 25 mm . differs from previously described specimens of this species not only in these larger dimensions, but also in laveng near the calice a clisiophylloid rather than a dibunophylloid section of the axial colmm. Instend of there being a maximum of nino lamellao on ouch side of the median lanella, ,here are in oue transverse section eighteen, nine shorter lamelae altomating with the nine long ones fonching the axial lamella; but in at transverse section about 3 mm . below, most of these shorter lamolace are not present. It is not thought that this difference from the earlier desoribed species is speefifie, althongh the boss in the calice also shows the eighteon lamellae on cither side of the median lamella. This large mmbor of lamollae is that chamerteristic of V. rothpletzi (Gerth, 1921, pl. extsii, figs. 10, 11) from the Lower and Middle Permian of Bitami, Mandeo and Basleo, Timor.

ZOANTHARIA MADREPORARIA TABULATA.

FAMILY FAVOSITIDAE.
 Genus FAVOSITES Lamarck.

F'avosites Lamark, 1816, p. 204; for reterences. ete., sce Jones, 1936, p. 2.
Genolectotype (see Edwards and Haime, 1850, p. Lx) : F^{\prime}. gothlandicus Lamarck, $1816, \mathrm{p} .206$, Silurian, Gotland.

Diagnosis: Corioid tabulate corals forming massive or ramose colonies, in which the contiguous corallites have thin or moterately thin walls, spinose or obsoleto sopta, and complete or mainly comploto horizontal tabulae.

Remarks: The geuus is widespread, from the Upper Ordovieian to the end of the Devonian ; forms like Favosites in the Carboniferous have usually been referred to Emmonsir, but Gerth (1921) has described as Favosites threo Permian spucies from Mandeo and the Middle Permian of Basloo, Timor.

FAVOSITES, sp. (Plate 11., fig. 万.)
Material: Two specimens from the base of the Linoprortuetus stage of the Wandagee series, contro of synclino west of Coolkilya Pool, Minilya River (one near Station 4A, tie other 12 chains from station f of 1939 survey).

Description : The corallum is tuberose, 30 to 40 mm . in diameter, and 50 mm . or more long. The individual corallites diverge outwards from the axis, each being about 1.5 to 2 mm . in diameter, though smaller ones occur. Owing to the processos of fossilisation, neither specimen is worth sectioning. Neither mural pores nor septal spinets whe proved, but one smface suggests a single vortical row of pores per wall. Thabulas are thin, slightly domed, and rather distant, 3 in 2 mm .

Remarks: The specimens do not appear to be conspecific with the speeies described by Gerth from Timor, or with any other species known to me.

Gemis: THAMNOPORA Steininger.

Thamnopore Steininger, 1831, p. 10 ; 1834, p. 337; for references, ete., see Hill, 1937 a, p. 56.
Genolectotype: Thamnopora madreporaces Steininger $=$ Alveolites cervicornia de Blainville, 1830.

Diagnosis: Ramose Tabulate corals in which the cylindrical branches may be flattened and eoalesced ; the corallites are typically polygonal, they diverge from the axis of the branch and usually open normal to the surface; the corallite walls are dilated throughout, and the dilatation incroases distally ; typically the growth lamination in the sclerenchymes of the wall is obvions, while its fibrous nature is not; soptal spines are usually obsolote, and mural pores are large.

Range: Silurian, Devonian, Permian, and rare in the Trias.

Thamnopora immensa Hill (Plate I., fig. 8 ; Plate II., fig. 6).
Thamnopora immensa Hill, 1937a, p. 58, pl. i., figs. 21, 22, text-fig. 9; Permian, two miles East of Christmas Creek Homestead, south of Rough Range, Kimberley.

Holo:ype: H. 25, Ceologioal Survey of Western Australia.
Diagnosis: Large Thamnoport, in which the corallites lave calices of two sizes opening at right angles to the surface of a branch, excessively dilated walls, thin tabulae, and numerous large, regular mural pores, frequently further excavated by boring organisms.

Remarles: Additional specimens, froin Boolgadoo Pool, Minilya River, and from Coolkilya Flat, south of the Minilya River, probably from the lower part of the Linoprorluctus stage of the Wandageo series, were sent by Dr. Teichert. They have allowed an expansion of the diagnosis given in 1937. Tho specimen from Boolgadoo is unweathered, and large corallites are seen between smaller ones on the calical surface. The calicos show cight or nime coarse radial ridges, somewhat as in Striatopora Hall ; the ridges are without
spines. In all specimens the corallites open at right angles to the surface, thus differing from T. marmionensis, where they open obliquely. In the M 16 specimen, dilatation is not so excessive as in the others, and thin tabulae can be scen. Individual septal spines or trabeculae have not been distinguished, though the sclerenchyme is fibrous. Etheridge may have included some specimens of T. immensa in his T. marmionensis, as his description of the lattor covers coralla with corallites opening at right angles to the direction of growth as well as those with corallites opening obliquely. The only two syntypes of T. marmionensis which I have seen, howover, had their corallites opening obliquely. T. immensa or a very closely similar form occurs in association with Euryphyllum reidi at Castlo Creek. Theodore, in an unknown horizon in the Queensland Bowen succession.

Thamnopora marmionensis (Etheridge).

Farosites marmionensis Etheridge, 1914, p. 13, pl. i., fig. 1; pl. ii., figs 2-4; pl. viii., fig. 2. Permian, Mt. Marmion, Kimberley District, Western Australia.

Diagnosis : Thamnopora forming large lobate masses, with corallite of two sizes opening obliquely to the surface, calices frequently with lower lip semi-circular, and with corallite walls becoming very thick distally; with large irregular pores, frequent tabulae, and without septal spines.

Remarlis: The species differs from the eastern Australian T. wilhinsoni (Etheridge) in bcing lobate rather than ramose, and in having the calices closer, while the projection of the calical rim is low compared with that of T. wilkinsoni.

Thamnopora aff. marmionensis (Etheridge) (Plate II., fig. 7).
Material: A fragment in limonito (g) from the lower part of the Linoproductus stage somewhat east of tho Heliocoprion locality of Coolkilya Flat ; only the calical surface can be studied, and this shows corallites of two sizes, most of the openings have one-half of their outline somicircular, representing the lower lip, which, however, doos not project, and the upper half polygonal, two or three short orges meeting at angles. This specimen is probably T. marmionensis, but the internal structure is obscured. A small lobate fragment (i) from high in the Calceolispongia stage at Station 25A, "Upper worm track " horizon north of Minilya River, with thin walls and oblique calices, which is probably T. marmionensis, but the calices are not clearly distinguishable into two sizes, and vary between 1 mm . and 1.5 mm . A worn, lobato fragment (b) from the highest beds exposed north-west of Station 23, in the lower part of the Linoproductus stage, Minilya River, which is probably T. marmionensis, although the corallite walls are thicker than in the syntypes, being 1 mm . or nearly 1 mm , throughout, and the septa appear to have denticulations resembling spines on their inncr edges. A cylindrical fragment (d) from the lower part of the Linoproductus stage near Station 4A, north of Minilya River, whose internal structure is similar to that of (b). A cylindrical fragment (c) from the same horizon at Station 4A, north of Minilya River, closely resembling (b) and (d). All these are from the Wandagee beds.

Remarks: One cannot be certain that these specimens, which are probably conspecific, are T. marmionensis, because of their fragmontary nature, and because our knowledge of syntypes is very limited; but the small, oblique corallites suggest that they are. I have seen nothing similar from eastern Australia.

Thamnopora insculpta sp. nov. (Plate I., figs 9 a.d; Plate II., figs. 8 and 9).

Type material: Eleven fragments, possibly from one specimen, from the Callytharra beds near Callytharra Springs, W.A., collected by C. Teichert.

Diagnosis: Slender branching Thannopora with the corallites opening a little obliquely to the surface, dilatation of the walls increasing greatly towards the surface, so that the openings are distant, and sunken into the unridged, faintly tuberculated wall tissue.

Description: The diameter of the cylindrical branching fragments varies between 3 mm . and 10 mm . The calical openings are uncqual, the largest being 1.5 mm ., some being 1 mm ., and a few 0.5 mm . in diamoter. They are unequally spaced, the smaller being in the angles between the larger, which tend to be arranged in vertical rows. The openings are occasionally surrounded by a raised rim, especially near the growing tips of the branches, its height boing greatest on the under sido of the opening, but in the older branches there is usually only a very faint trace of this rim, and that on the under side of the opening. Between the openings there is instead from 0.5 to 3 mm . of dense selorenchyme, which is lightly tuborculato, and no traco of the junction between the walls of neighbouring corallitos can be soen. Faint septal ridges are obse vable in one or two calices, twelvo being counted. The corallites are almost vertical in the axial parts of the branch, and very small, being from 0.1 to 0.5 mm . in diarneter, with but slightly thickenod walls. Outside this axial part of diancter abont 2 mm ., the corallitess bend rather rapidly outwards, opening to tho surface at less than 30° to the horizontal. As they proceed to the surface they increase in diameter, but the greatest part of this increase is due to an increase in the thickness of the walls, the lumen nover becoming wider than 1.5 mm . Tho walls may be wery thick, from the dark line representing tho junction of two corallites to the inner edges of the septa may be as much as 1.5 mm . The fibrous structure of this thickened tissure shows that it consists of twelve equal septa so dilated as to be in contact laterally. The vertical sections suggest that they have denticulate innor edgos; but individual trabeculae are not distinguishable in the fibrous tissuo, as septal spines. Mural pores aro fariyy frequent, small and regular. Tabulae aro thin and distant.

Remarks: The generic position of this species is doubtful. The occurrence of twelve equal septa is a character suggestive of goneric difference from Thamnopora cervicornis, since neither sopta nor septal spines are known in the types of T. cervicornis. Species with soptal spines have been included in Thamnopora, but possibly this Westorn Australian species with lamellar septa should be placed in a scparato genus with the eastern Austratian Trachypora wilkinsoni Etheridge, to which it is very close. T' wilkinsoni has the twelve lamellar septa much more clearly developerl, and in it the outer boundaries of the individual corallites are distinguishable by ridges on the surface. T'. wilkinsoni occurs in the Upper Marine of Mulbring, and of Ellalong, N.S.W., in the Coral Stage of the Bowen Marine of the Springsure Basin, Queensland, and in the Condamine Fault block, near Silvorwood, Queensland. I have not scen it from Western Australia, but T. insculpta appears to me to be a related form. Favosites permica Gerth (1921, p. 101, pl. cxlix., figs. 1, 2, 3, pl. cl., fig. 1) from the Basleo Beds, also has twelve septa, lamellar in the upper part of the calice, but this form is enerusting. Its septa consists of spines fused together at théir bases, forming a series of stripes on the calical floor, but with separate spine ends in the lumen. Twolve septa, sometimes acanthine, but frequently with the spines fuscd at their
bases to form lamollar septa, in the form of stripes on the corallite walls, appears to bo the highest number possible in I'seulofuvosites stylifer var. septosa (ierth (1921, p. 104, pl. cxlviii., figs. 7, 8) from Basleo, and this number is usually attamed. But this gemus is without tabmae.
? Thamnopora sp. (I'late 1., fig. 10 ; Plate II., fig. 10).
Material: One specimen, collented by C. Teiehert, from Callythara springs.

Description: Tho corallom is partly oncrusting, extensi orm but of erumpled growth, with stumpy branches on tho upper surfaco, which has beon pittel by rain woathoring. Its sizo is $60 \times 60 \times 15 \mathrm{~mm}$. fhe branches boing mostly broken ofl at a height of 5 to 10 mm , and being abont 8 mm . in diametcr. 'The corallites are unecual, ap to 2 or 2.5 mm . in diameter. Tho walls of the corallites in the branches are much diated, but thoso in the basal layors and in the patis in which tho branches aro sed are thin. The walls of the corallites in the axes of the branches aro also thin. Whon analysed mioroscopically, tho dilatation is seon to be soptal in origin : the individual trabeculate of sach septom aro dilatod and in contact so that lamellar septa are formod, from the axial edges of which donticulations may nevertholess arise ; and tho dilatation is so groat that noighbouring septa are in contact laterally, to form a donse wall. Tho mumbor of tho sopta per corallite is mbinown. 'Thos calices probably opon obligucty to the surface of the branch, but this is mproved. Mural pores are numorous, and oceur both between and pioreing tho sopta. T'abulas aro distant and very thin.

Remurks: In its mannor of growth this specimon rosembles some of the Devonian Alueolites, but the weathering does not permit us to study the outline of the calices. It may perhaps represent the basal portion of the branehing Thammopora insculpta, but further knowledge of the number of septa and oblifuity of corallites is nooded before this may be regarded as more or less than a possibility.

F゙AMILY CLADOCHONIDAE.
 Genus CLADOCHONUS II'Coy.

Cladochonus M'Coy, 1847, p. 227.
Monilopora Nicholson and Ltheridge, 1879, 1. 293, genotype Jania crassa M'Coy, 1844, p. 197, Lower Carboniferons of Ireland.

Cladochonas: Hill and Smyth, 1938, p. 126.
Genolectotype (chosen lidwards and Haime): Clatochomus temmeollis M'Coy, 1847, p. 227, pl. xi., figs. 8, Lowor Carboniforous of Now South Wales.

Diagnosis : Corallum compound, with a reptant ring of corallites proximally, fiom which froo branches arise ; individual corallitos ato trumpot or pipe-shaped, and in contact omly at tho point of origin, oach giving rise to another by lateral incroase through tho wall of tho expanded calico; bach has a thick periphoral storoozone of laminar, sometimes reticulated selerenchyme; nothor tabulae nor soptal spines are seen in the narrow lumen, but longitudinal (? soptal) riders may appear in tho calices.

Remarks : Hill and Smytlı (loc. cit.) havo shown that tho genotype of Monilopore was but tho reptant portion of a coral whose free branches are Jania bacillaria M'Coy, a spocies of Cladochonus, and that Cladochonus has
priority over Monilopora. The genus extends from the Devonian through the Carboniterous to the Permian, and characterises the Cyatharonia phase of sedimentation.

Cladochonus nicholsoni (Etheridge).

Monilopora nicholsoni Etheridge, 1914, p. 14, pl. i., figs. L2-4; pl. vii., fig. 4; P'ermian (? L'pper Artimskian), N1t. Marmion, Kimberley. W.A.
Monilopora nicholsoni: Etheridge, 1918, pl. xxxix., figs. 2, 3, Permian, Balmaningarra, Mt. Marmion, W.A.
non Monilopora ? nicholsoni ; Hill, J937. a, p. 59, pl. i., figs. 23, 24, text-figs. 10, 11, from Callytharta, which is Cladachonus striatus sp. nov.

Type Materiul: Of the syntypes, only a fragment, Australian Museum Fib418, has so far beon found. From it was cut tho section figired Etheridge, 1914, pl. vii., fig. 4. The specimens figured Etheridge, 1918, pl. xxxix., figs. 2, 3, aro Australian Museum F16820 and F16712 rospoctivoly from Bahnaningarra, Mt. Marmion. These are conspecific with the type material, and are described below.

Diagnosis: Bifurcating, free branches, 4.5 to 7 mm . thick, with successive corallitess on opposite sides of a branch, the diameter at the edge of the calice being constantly 4.5 mm .

Description (of specimens from Balmaningara): The diameter of the free branches. measured at right angles to tho plano of the calices, is from $4 \cdot 5 \mathrm{~mm}$. to 7 mm ., most fragments having appoximately the same diameter top and botom, exeept at the point where bifurcation oecors: a branch of 7 mm . average diameter expanded to $8 \cdot 5 \mathrm{~mm}$. at steh a point. The angle ber tween the products of bifuration is about 30 ; the distance botween bifincations varies, aml new branches are in a plane at right angles to the plane of the calical openings. (alical openinge aro circular, and faily rognlaty 4.5 mm . in dameter, eren when the branches aro slemeler. Thoy are also faily rogenlarly spacel, there boing from 8 mm . to 10 mm . between the dige of the lower lip of one comalle to that of the next above. The lower lip of the cafiee is sharp, but not continned into at ledge, tho sharpmess boing due to the oblifuity of the lunch to the branch, which is abont 45'. 'The catieces altornate on opposite sides of a branch, wach branch usually having two vertionl rows of raliees, though fast before bifuration there may be integularity. Rach calice arises from the uppee part of the base of the one below. The calical opening extends inwards with a very gradtab and regular docrease in diamotor for at least 4 mm ., and there are signs of septal ridges in its upper parts. Wherideres thin section shows reticular tissuo lining its lowor parts.

Remertis: The reptant parts of the corallum from which these free branches are presumeal to have arisen, are as yot unkown. ha the Condamine fatult block, near Silverwood, Queensland, and in the Coral Stage of the springsure District. Queensland, fragments whose dimonsions eomespond to those of the Balmaningata specimens except that the calical edess may be 5 mm . in diameter rather than 4.5 mm . oceur, associated with other ('ladochonid fragments of different proprortions, but which yet may prove to be this spenetes, and with Thommopore willimsomi (Etheridge). In view of the abumbanee of specimens of different proportions with those with chatateristice proportions at these two Querestand localities, it is important to obtain more syntypers of C. nicholsoni, in order to define the range of variation possible in the speceses. Cladochonns beecheri (Gaban, (ierth, 1921, pl. exlix., fig. 12) and C. maymes Gerth (id. figs. 10, 11) from the Middle Permian of Basteo, Timor, are erom larger than this Australian speries, but their dimensions are atiaine by a sperimen in the Thiversity of (Queensland from ('ressbrook ('resk, nean Esk.

Cladochonus striatus sp. nov. (Plate II., fig. 11).
Monilopora? nicholsoni Etheridge, Hill, 1937, a, p. 59, pl. i., figs. 23, 24, text-figs. I0, 11, Permian, Callytharra, W.A.

Holotype: Specimen figured Hill, loc. cit., text-fig. 10, in the Collection of the University of Western Australia, from the Permian of the creek half a mile west of Callytharra Spring, Wooramel River, W.A.

Dingnosis: Slender Cladochonus, with corallites widest at the calical rim, which is 3 or 4 mm . in diameter, and with 18-20 faint longitudinal striations on the epitheca.

Remark: Tho spocimens previously described were reptant portions of coralla, but I now have fragments of erect branchos from the Callytharra beds near Callytharra Springs. The species has much slenderor proportions than the later C. nicholsom, and tho longitudinal striation on its epitheea has not been noted in any other species.

ACKNOWLEDGMENTS

This work has beon carried out while the author hold a Research Fellowship within the University of Queensland financod by Commonwealth Funds through the Council for Scientifie and Industrial Research. She is indebted for facilities for study at the University of Queensland to Prof. H. C. Richards, D.Sc. The specimens were collected partly by Dr, C. Teichert and partly by Mr. H. Coley. They were loaned by Dr. C. Teichert of the University of Western Australia, who has given the stage and bed locations.

BIBLIOCRAPHY.

Chi, Y. s.. 19:37: On some Simple Corals from the Permian of Yongsin, Kiangsi. Bull.

Clarke, E. te ('. 1938: Correlation of the Carhoniferous and Permian Formations of Australia, II., Western Australia. Rept. A.N.Z. Ass. Adv. Sci, XXIII., pp, 426-430.
Dobrolyubova. T. A., 1936: Rugosa Corals of the Middte and Upper (artomiferous and Promian of the North C'ral. Ared. A'ci. V.S.s.R.R. Truns. Poler Comm. Fasc. 28, pp. 77-1.58, 81 text-figs.
Etheridge, R.:
1914: Western Anstralian Carboniferous Fossils, whielly from Mount Marmion, Lennard River, West Kimberley. Bull. (ieol. Sure. IV.A. 58,59 pp., 9 pls.
1918: Observations on Carboniferons and other Fossils collected by Dr. Herbert Basedow at varions localities in North-west Anstralia. Proc. Roy. Geogr. S'or. Australusien (心...f. Branch), 1916-1917, 13 pph ., pls. xsxix-xl.
Gerth, H., 1921: Die Anthozoen der Dyas ron Timor, NT'I., in .I. Wanner, Paläontologie von T'imor: Licf. LX., 1p. 6.)-147, phs. exlv-ci. Stuttgart.
Graban, A. W.., 1922 and 1928: Palacozoic Corals of China, Part I., Tetraseptata. Palaeont. Simict (13). IL, Fasc. 1 (1922), $76 \mathrm{pp} ., 1 \mathrm{pl}$: Fasc. : (1928), $175 \mathrm{pp}, 6$ pls
Heritsch, F.:
1936: Komallen der Moskanero, Gshel- mid showagerinen-Ktufe der carnischen Alpen. Palneontogr. Stultyart, LXXXIII. (A), pis 99-I62, pls. xiv-x ciii, 50 textligs.
1937: Rugose Korallen ans dem Salt Range, ans Timor mand ans Doulfa mit Bemerkingen über die stratigraphie des l'erms. Sitz. Ahew, Wiss. W'ien Math.naturw. Klasse Abt. 1., CXL'S., pp. 1-16, pls. i, ii.
Hill, 1).:
1937: 'Type specimens of Palacozoic Corals from New Sonth Wales in W. B. Clarke's Fiisst Collection, and in the Strzelecki Collection. Geol. Mag. London, LANO', fp. 145-1.33, text-figs. 1-9.
1937, a: The Permian Corals of Western Australia. Jour.. Roy. Soc. H.A., XXIII., II. 43 -fi3, pl. i, text-figs. 1-11.

1938: Euryphyllum: A new Genus of Permian Zaphrentoid Rugose Corals. Proc. Roy. Soc. Queensl., XLIX,. pp. 23-28, pl. i.
1938, a: The Carboniferous Rugose Corals of S'otland, Part I. Palaeontogr. Soc. Monogr., pp. 1-78, pls. i, ii.
1940: The Silurian Rugose Corals of the Yass-Bowning District, New South Wales. Proc. Linn. Soc. N.S.W., LXV., pp. 388-420, pls. xi-xiii.
Hill, D., and Smyth, L. B., 1938 : On the Identity of Monilopora Nicholson and Etheridge, 1879, with Cladochonus M’Coy, 1847. Proc. Roy. Irish Acru., XLV. (B), pp. 125-138, pls. xxii-xxiii.
Hudson, R. G. S. :
1928: On the Lower Carboniferous Corals-Cravenia rhytoides and Cravenia tela, gen. et spp. n. Proc. Leeds Philos. Soc. (Sci.) I., pp. 252-257, pl. i.
1935: On the Lower Carboniferous Corals : Rhopalolasma, gen. nov., and Cryplophyllum, Carr. Proc. Yorks. Geol. Soc., XXIII., pp. 90-102, pls. iv, v.
Jones, O. A., 1936 : The Controlling Effect of Environment upon the Corallum in Favosites; with a Revision of some Massive Speries. Ann. Mag. Nat. Hist. (10), XVII., pp. I-24, pls. i-iii.
M'Coy, F. :
1844: A Synopsis of the Characters of the Carboniferous Limestone Fossils of Ireland, pp. VIII, 207, 29 pls.
1847: On the Fossil Botany and Koology of the Rocks associated with the Coal of Australia. Ann. Mag. Nat. Hist., XX., pp. 145-157, 226-236, 298-312, pls. ix-xvii.
Nicholson, H. A., and Etheridge, (.Jr.) R., "1879: On the Microscopic Structure of three Species of the Genus Claulochonus M'Coy. Ceol. Mag. London (2), VI., pp. 289-296, pl. vii.
Penecke, K. A., 1908 : Uber cin ncue Korallengattung aus der Permformation von Timor. in. R. D. M. Verbeek, Rapport sur les Moluques. Batavia. Jaarb. v.h. Mijnuezen, xxxvii, pp. 672-674, text-figs.
Soshkina, E., 1928: The Lower Permian Corals of the Western Parts of the Northern Urals. Bull. Soc. Nat. Moscou (Geol.) VI., (NS), XXXVI.
Teichert, C., 1939 : Recent Research Work on the Permian of Western Australia. Austral. Jour. Sci., II., pp. 5-7.

EXPLANATION OF PLATES.

Plate I.

Permian Corats from Western Australia.
All specimens are in the Collection of the University of Western Austratia.
All figures by 2 diameters, approximately.
Iig. 1 "Amplexus" pustulosus Hulleston. Transverse section. Upper part of Callytharra Seriess near Trig. Station K.22, Kemeely Range, near WilliamburyMiddalya roarl. No. 41071.

Fig. 2. Allotropiophylum, sp. 'Transverse section. Middle part of the Calceolispongia Stage in the Wandagre Series, near Coolkilya Pool, Minilya R. No. 41072.

Fig. 3. Euryphyllnm reidi Hill. 'Transserse section. Lpper part of the C'alceolispongia Stage in the Wandagee Series, north side, Minilya R., W. of Coolkilya Pool. No. +1073.

Fig. 4. ? E'myphyllem, sp. Transverse section. Lokality and horizon as for fig. 2. No. 41074.

Fig. 5. Verbeekiella mersa, sp. now. Transvorse section of holotvpe. Lower part of the Calceolispongie Stage in the Wandagee Series, north side, Minilya R., W. of Cookily: Pool. No. 4107.).

Fig. 6. Verbeekiella mersa, sp. now. Vertical seetion. Lpper part of the Culceolispongice stage in the Wiandagee Series, north sifle . Minilya R., W. of Coolkilya Pool. No. 41076.

Fig. 7. Verbeekia talboti (Hosking). 'Transserse section. (allytharra Series, Callytharra springs. No. 41077.

Fig. 8. Thamnopora immensu Hill. Vertical section. Bulgarloo Pool, Minilya R. No. +1069 (- 20204).

Fig. 9. Thamnopora insculpta, sp. nov. Type material. ('allythara Series near Callytharra Springs, a. b, transverse section ; e. tangential and d, median vertical section. No. 41078 a. b. c., d.

Fig. 10. Thamopora sp. Section. Callythama Stage, Callytharra Springs. No. 41079.

[^0]: 1'The sucession here given is that. givm by Teichert (1939 , p. ib) abd persomal communication.
 ${ }^{2}$ The surcession miven here in alter Wiade in C'larlse (1038 , p. 420).
 i $140 / 41$.

[^1]: ${ }^{3}$ sureession after Teichert (1939, p. 6), and (larke (1938, 1- te29).

